PHIL 183 (F13) - TA section Symbolization and Derivation Chapter III

Juliana Lima (jflima@umail.ucsb.edu)
Office Hours: W 1pm-2pm
F 10:50am-11:50am
\hookrightarrow Stylistic variants:
$\Lambda \times \mathrm{Fx} \quad\left\{\begin{array}{l}\text { Everything is F. } \\ \text { Each thing is } \mathrm{F} . \\ \text { All things are F. } \\ \text { For each } \mathrm{x}, \mathrm{x} \text { is } \mathrm{F} .\end{array}\right.$
$\mathrm{Vx} \operatorname{Fx} \quad\left\{\begin{array}{l}\text { Something is } \mathrm{F} . \\ \text { At least one thing is } \mathrm{F} . \\ \text { There is a } \mathrm{F} .\end{array}\right.$
$V x(F x \wedge G x) \quad\left\{\begin{array}{l}\text { Some F is G. } \\ \text { Some F's are G's. } \\ \text { At least one F is G. } \\ \text { There is a F who/which is G. } \\ * * A \text { (certain) } F \text { is G. } * *\end{array}\right.$
$V_{x}(\mathrm{Fx} \wedge \sim \mathrm{Gx}) \quad\{$ Some F isn't G.

$\Lambda x(G x \leftrightarrow F x)$
$\Lambda x(G x \rightarrow F x) \wedge \Lambda x(F x \rightarrow G x)$$\quad\{$ All and only F's are G's.
$\sim \mathrm{Vx}(\mathrm{Fx} \wedge \mathrm{Gx}) \quad\{\mathrm{No} \mathrm{F}$ is G.
$\Lambda x(\mathrm{Fx} \rightarrow \sim \mathrm{Gx}) \quad\{\mathrm{F}$ s are not G.

PHIL 183 (F13) - TA section Symbolization and Derivation Chapter III

Juliana Lima (jflima@umail.ucsb.edu)
Office Hours: W 1pm-2pm
F 10:50am-11:50am

$\Lambda x(H x \rightarrow(G x \rightarrow F x \vee I x)) \quad$ \{ Among H's, only F's and I's are G.
$\wedge x(\mathrm{Ix} \wedge \mathrm{Gx} \rightarrow \mathrm{Fx}) \quad\{$ I's who are G's are F's.
$\wedge x(\mathrm{Ix} \rightarrow \mathrm{Fx}) \wedge \wedge \mathrm{x}(\mathrm{Ix} \rightarrow \mathrm{Gx})$
$\wedge \mathrm{x}(\mathrm{Ix} \rightarrow \mathrm{Gx} \wedge \mathrm{Fx})$$\quad\{\mathrm{I}$'s, who are G's, are F's.
$\Lambda \mathrm{x}(\mathrm{Ix} \rightarrow \mathrm{Gx}) \rightarrow \Lambda \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Gx}) \quad\{$ If every I is G, then any F is G.
$V \mathrm{x}(\mathrm{Fx} \wedge \mathrm{Gx}) \rightarrow \Lambda \mathrm{x}(\mathrm{Ix} \rightarrow \mathrm{Gx}) \quad\{$ If only F's are G's, then every I is G.
$\mathrm{GA} \rightarrow \Lambda \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Gx}) \quad\{$ If A is G, then any F is G.
$V x(F x \wedge G x) \rightarrow G A \quad\{$ If any F is G, then A is G.
$\Lambda x(\mathrm{Fx} \wedge \mathrm{Gx} \rightarrow \mathrm{Hx})$
$\Lambda \mathrm{x}(\mathrm{Fx} \rightarrow(\mathrm{Gx} \rightarrow \mathrm{Hx})$$\quad\{$ If any F is G, then he/she/it is H.

PHIL 183 (F13) - TA section Symbolization and Derivation Chapter III

Juliana Lima (jflima@umail.ucsb.edu)
Office Hours: W 1pm-2pm
F 10:50am-11:50am
\rightarrow New form of derivation: $\quad \underline{\text { Universal Derivation - UD (K\&M, p. 143) }}$

n. Show $\wedge \alpha \Phi \alpha$ Assertion n+1, UD

\hookrightarrow New Rules of Inference (K\&M, p. 141)

- proper substitution (K\&M, p. 139): $\Phi \beta$ comes from proper substitution of β for α if $\Phi \beta$ is just like $\Phi \alpha$ except for having free occurrences of β whenever $\Phi \alpha$ has free occurrences of α.

> UI
> n. $\frac{\wedge \alpha \Phi \alpha}{\Phi \beta}$
> $\mathrm{n}, \mathrm{UI} / \beta$
> ** Where $\Phi \beta$ comes from Φ_{α} by proper substitution of the term β for the variable α in $\Phi \alpha^{* *}$
> EG \quad n. $\frac{\Phi \beta}{V \alpha \Phi \alpha} \quad$ n, EG
> ** Where $\Phi \beta$ comes from $\Phi \alpha$ by proper substitution of the term β for the variable α in $\Phi \alpha^{* *}$

EI
n. $\frac{V \alpha \Phi \alpha}{\Phi \beta} \quad \mathrm{n}, \mathrm{EI} / \beta$

* Where $\Phi \beta$ comes from $\Phi \alpha$ by proper substitution of the term β for the variable α in $\Phi \alpha$; AND
* β is a variable; AND
* β is a new variable, i.e., doesn't occur anywhere in the derivation.

PHIL 183 (F13) - TA section Symbolization and Derivation Chapter III

Juliana Lima (jflima@umail.ucsb.edu)
Office Hours: W 1pm-2pm
F 10:50am-11:50am

- Examples:
** In order to follow a derivation, you have to read carefully the annotation. Make sure you know which lines and inference rules are being used to justify a line **

Deriv 3.001: $\Lambda x(F x \wedge G x) \therefore \wedge x G x$

Deriv 3.002: $\mathrm{VxFx} \therefore \mathrm{Vx}(\mathrm{Gx} \rightarrow \mathrm{Fx})$

1.	Show $\mathrm{Vx}(\mathrm{Gx} \rightarrow \mathrm{Fx})$	4 DD
2.	Fa	Pr EI/a 3.
$\mathrm{Ga} \rightarrow \mathrm{Fa}$ 4. EI as soon as you can !! 2 RT 2		
$\mathrm{Vx}(\mathrm{Gx} \rightarrow \mathrm{Fx})$	3 EG	

Deriv 3.004: $\Lambda \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Gx}) . \wedge \mathrm{x}(\mathrm{Gx} \rightarrow \mathrm{Hx}) \therefore \mathrm{FA} \rightarrow \mathrm{Vx}(\mathrm{Gx} \wedge \mathrm{Hx})$

1.	Show FA $\rightarrow \mathrm{Vx}(\mathrm{Gx} \wedge$	3, CD
2.	FA	Ass CD
3.	Show Vx(Gx \wedge Hx)	10, 11 ID
4.	$\sim \mathrm{Vx}(\mathrm{Gx} \wedge \mathrm{Hx})$	Ass ID
5.	$\wedge x \sim(\mathrm{Gx} \wedge \mathrm{Hx})$	4, QN
6.	$\mathrm{FA} \rightarrow \mathrm{GA}$	Pr1, UI/A
7.	GA	2, 6 MP
8.	$\mathrm{GA} \rightarrow \mathrm{HA}$	Pr2, UI/A
9.	HA	6, 7 MP
10.	$\sim(\mathrm{GA} \wedge \mathrm{HA})$	$5 \mathrm{UI} / \mathrm{A}$
11.	$\mathrm{GA} \wedge \mathrm{HA}$	7,9 ADJ

PHIL 183 (F13) - TA section Symbolization and Derivation Chapter III

Juliana Lima (jflima@umail.ucsb.edu)
Office Hours: W 1pm-2pm
F 10:50am-11:50am

Deriv 3.014: $\quad \wedge \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Gx}) . \vee \mathrm{x}((\mathrm{Fx} \wedge \mathrm{Hx}) \vee(\mathrm{Fx} \wedge \mathrm{Jx})) \rightarrow \sim \wedge \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{Gx}):$.

$$
\Lambda x(\mathrm{Fx} \rightarrow \sim \mathrm{Jx})
$$

Just our usual strategy to show a negation, i.e., assume the thing that is being negated.

1.	Show $\Lambda \mathrm{x}(\mathrm{Fx} \rightarrow \sim \mathrm{Jx})$
2.	Show Fx $\rightarrow \sim \mathrm{Jx}_{\mathrm{x}}$
3.	Fx
4.	Show ~Jx
5.	Jx
6.	$\sim \mathrm{Vx}\left((\mathrm{Fx} \wedge \mathrm{Hx}) \vee\left(\mathrm{Fx} \wedge \mathrm{Jx}^{\prime}\right)\right)$
7.	$\wedge \mathrm{x} \sim\left((\mathrm{Fx} \wedge \mathrm{Hx}) \vee\left(\mathrm{Fx} \wedge \mathrm{Jx}^{\prime}\right)\right)$
8.	$\sim((\mathrm{Fx} \wedge \mathrm{Hx}) \vee(\mathrm{Fx} \wedge \mathrm{Jx}))$
9.	$\sim(\mathrm{Fx} \wedge \mathrm{Hx}) \wedge \sim(\mathrm{Fx} \wedge \mathrm{Jx})$
10.	$\sim(\mathrm{Fx} \wedge \mathrm{Jx})$
11.	$\mathrm{Fx} \wedge \mathrm{JX}^{\prime}$

Remember: to use UD, you have to show the formula that follows the quantifier, in this case, $\mathrm{Fx} \longrightarrow \sim \mathrm{Jx}$. For this reason I introduced a new show line.

Ass ID
Pr1 DN, Pr2 MT

9 S
3,5 ADJ

Deriv 3.715: $\Lambda x \vee y(F x \vee \sim G y) . \vee x \wedge y(G y \vee H x) \quad \therefore \sim V x H x \rightarrow \wedge x F x$

1.	Show $\sim \mathrm{VxHx} \rightarrow /$	3 CD
2.	$\sim \mathrm{VxHx}$	Ass CD
Just our usual strategy to show an atomic sentence, i.e., assume the negation.	Show $\Lambda \mathrm{xFx}$	4 UD Pr1 UI/x: $\mathrm{Vy}(\mathrm{Fx} \vee \sim \mathrm{Gy}$),
	Show Fx	10, 12 Id
	$\sim \mathrm{Fx}$	Ass ID
	$\mathrm{Fx} \vee \sim \mathrm{Ga}$	Pr1 UI/x, EI/a
	$\sim \mathrm{Ga}$	5,6 MTP Remember the restriction:
	$\wedge \mathrm{y}(\mathrm{Gy} \vee \mathrm{Hb})$	$\operatorname{Pr} 2 \mathrm{EI} / \mathrm{b} \sim$ NEW VARIABLE !
	$\mathrm{Ga} \vee \mathrm{Hb}$	$8 \mathrm{UI} / \mathrm{a}$
	Hb	7,9 MTP ${ }_{\text {I decided to UI to }} \begin{aligned} & \text { because I have }\end{aligned}$
	$\wedge \mathrm{x} \sim \mathrm{Hx}$	2 QN
	$\sim \mathrm{Hb}$	$11 \mathrm{UI} / \mathrm{b}$

PHIL 183 (F13) - TA section Symbolization and Derivation Chapter III

Juliana Lima (jflima@umail.ucsb.edu)
Office Hours: W 1pm-2pm F 10:50am-11:50am
\hookrightarrow Exercises to practice:

* For each of the following expression, state whether or not it is a well formed formula. If an expression is a symbolic formula, give the tree of formation. (Examples: K\&M, p.121)

Pars 3.002:Vx~(Fx)
Pars 3.012: $\wedge \mathrm{A}(\mathrm{FA} \rightarrow \sim \mathrm{GA})$
Pars 3.026: $\sim \wedge \mathrm{x} \sim \mathrm{VyFx} \wedge \sim \mathrm{Gy}$
Pars 3.028: $\mathrm{VxFx}_{\mathrm{x}} \wedge \mathrm{VxGx}_{\mathrm{x}} \rightarrow \mathrm{Vx}(\mathrm{Fx} \wedge \mathrm{Gx})$

Pars 3.011: $\mathrm{Vx}(\mathrm{E} \rightarrow \mathrm{Fx})$
Pars 3.017: $\wedge \mathrm{a}(\mathrm{Hx} \leftrightarrow \mathrm{Gy})$
Pars 3.027: $\Lambda x(F G x \rightarrow G y)$
Pars 3.030: $\vee x(P \rightarrow \wedge x \sim Q x)$

* Determine which inference rule, if any, the following arguments instantiate:

Recog 3.001: $\wedge x(\mathrm{Fx} \rightarrow \mathrm{Gy})$
$\mathrm{Fx} \rightarrow \mathrm{Gy}$

Recog 3.004: $\frac{\text { VyGy }}{\text { GA }}$

Recog 3.007: $\wedge x V y(F x \rightarrow G y V H x)$
$\mathrm{Vy}(\mathrm{FA} \rightarrow \mathrm{GyVHA})$

Recog 3.018: ($\wedge \mathrm{xFx} \rightarrow \mathrm{Vy}(\mathrm{HyVHx})$)
$\mathrm{FB} \rightarrow \mathrm{Vy}(\mathrm{HyVHB})$
Recog 3.028: $\frac{\mathrm{VxFx} \rightarrow \mathrm{FA} \vee \wedge \mathrm{xGx}}{\mathrm{Vx}_{\mathrm{x}}(\mathrm{VxFx} \rightarrow \mathrm{Fx} \wedge \wedge \mathrm{xGx})}$
Recog 3.002: $\frac{\mathrm{Gx}}{\Lambda \mathrm{xGx}}$

Recog 3.006: $\frac{\mathrm{VxGy}}{\mathrm{Gz}}$
Recog 3.011: $\frac{\mathrm{FA} \rightarrow \mathrm{GA}}{\mathrm{Vy}(\mathrm{Fy} \rightarrow \mathrm{Gy})}$
Recog 3.020: $\frac{\mathrm{Vz}(\mathrm{FA} \wedge \mathrm{Gz}) \rightarrow \mathrm{VxHxVGA}}{\mathrm{Vx}(\mathrm{Vz}(\mathrm{FA} \wedge \mathrm{Gz}) \rightarrow \mathrm{VxHx} \mathrm{VGx})}$
$\operatorname{Recog} 3.030: \frac{\Lambda x(\mathrm{Fx} \rightarrow \mathrm{Vy}(\mathrm{FB} \wedge \mathrm{Gy}))}{\Lambda \mathrm{x}(\mathrm{Fx} \rightarrow \mathrm{VzVy(Fz} \mathrm{\wedge Gy))}}$
\hookrightarrow Do as many derivations as you can on the software !!

